Ej4. Obtenga la transformada de Laplace de la siguiente función.
f(t) = t2
Para resolver este problema utilizamos la propia definición de Transformada de Laplace:
Y simplemente, debemos resolver dicha integral:
Resolvemos la integral por partes:
· u = t2 | , | du = 2t |
· dv= e-st | ,.. | v = -(1/s)e-st |
Resolvemos la integral:
La integral que tenemos ahora, la volvemos a operarla por partes:
· u = 2t | , | du = 2dt |
· dv= e-st | ,.. | v = -(1/s)e-st |
Para resolver de forma fácil la integral propuesta:
Ahora, podemos operar de forma fácil la integral:
Tenemos dos problemas, con el primer y segundo término cuando t tiende a infinito:
·
·
Ambas, son una indeterminación del tipo: ∞/∞. Para obtener su resultado, observaremos el valor en el límite, para ello, necesitaremos aplicar L'Hôpital:
·
·
Pues ya disponemos de todos los datos necesarios para obtener la Transformada de Laplace de la función dada en este problema:
Para s > 0.
0 comentarios:
Publicar un comentario